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The structure of a hydromagnetic shock in 
steady plane motion 

By G. S. S. LUDFORD 
University of Maryland and Harvard University 

(Received 31 May 1958) 

In  this paper we discuss the structure of those oblique shocks which occur in 
plane hydromagnetic flow. We find that not all pairs of states satisfying the shock 
conditions can be linked by a one-dimensional flow of a viscous, electrically 
conducting fluid, while other pairs can be linked in more than one way. In  the 
latter case a particular transition is singled out when further information is given 
concerning the three-dimensional problem of which the plane motion is an 
idealization. 

Introduction 
We consider the steady plane motion of an electrically conducting, perfect, 

viscous gas in the presence of a magnetic field in its own plane, on the basis of 
classical continuum theory. The local behaviour of the gas at a shock is studied 
by considering transitions in which all quantities, as functions of one co-ordinate 
z, change from finite initial values at  x = - co to fmite final values at x = + co. 

This problem was studied by Marshall (1955) for the particular case in which 
the x-component of the magnetic field (i.e. normal to the Rhock front) is zero 
throughout, so that the y-component of velocity may be taken zero also. He 
found that for a given initial state at x = -co there is not only a unique final 
state at  z = +a but also a unique transition. In  the general (oblique) case 
discussed in the present paper we find that there can be as many as three h a 1  
states, with, moreover, an infinite number of transitions ending a t  one of them. 
The former indeterminacy is implied in several discussions of the necessary 
conditions which hold across a discontinuity surface in the flow of an inviscid, 
perfectly conducting fluid, and is presumably resolved in any particular problem 
by specifying further boundary conditions. However, such treatments can never 
discover whether two states satisfying these necessary conditions can in fact be 
joined by a transition solution, much less whether it is unique. Indeed, we shall 
also find that some pairs of states cannot be joined. In  brief, the shock conditions 
are not sufficient to ensure that there is a unique transition joining any two states 
satisfying them [cf. the corresponding situation for the purely gas-dynamical 
shock as described by von Mises (1958)l. 

We consider in detail two particular cases, the first of which is Marshall’s. The 
second corresponds simultaneously to switch-on (fast), switch-off (slow), and 
transverse shock discontinuities as identified by Friedrichs (1957). There is no 
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transition solution for the last-mentioned and we must conclude that the trans- 
verse shock cannot occur in plane motion. Here we also encounter the lack of 
uniqueness mentioned in the last paragraph, which seems to point to the necessity 
of specifying how the current lines (lying along the z-direction) are closed a t  
infinity, this constituting additional information about the three-dimensional 
problem of which the plane motion is an idealization. In  fact, when we assume 
that the motion is the limit (at large radial distances) of an axially symmetric 
flow, for which the current lines are closed in the fluid (circles), the difficulty 
resolves itself. 

Special interest lies in the behaviour of a transition solution in the limit of 
vanishing viscosity with non-zero resistivity. Marshall indicated that in his case 
a purely gas-dynamical discontinuity can appear (the Rankine-Hugoniot condi- 
tions are satisfied and the magnetic field is continuous), upstream of which there 
is an adjustment region to hydromagnetic values. We show explicitly that the 
adjustment may take place upstream or downstream, the former occurring in his 
case and for the switch-on shock, the latter for the switch-off shock. 

Governing the motion are the Navier-Stokes equations, now containing terms 
arising from the Maxwell stresses and with the Joule heat appearing as a new 
gource of dissipated energy, and Maxwell's equations supplemented by Ohm's 
law for a moving medium. The charge accumulation is neglected and, for sim- 
plicity, all material coefficients are assumed constant. 

The argument is concerned with a phase plane, in which the transition solutions 
are represented by curves joining singular points of a certain system of differential 
equations. Any pair of singular points satisfies the shock conditions, and it is a 
question of deciding how many curves (if any) join the pair. 

1. Equations of motion 
We consider a motion in which the velocity v and the magnetic field H are 

given by 

where all components are functions of x alone. It then follows from div H = 0 that 

H, = constant, ( 2 )  

and from J = curlH that the current lies in the z-direction: 

J = (O,O,J),  J = H'(z) .  (3) 

If we now assume the conduction equation 

J = ~ ( E + ~ v x H ) ,  (4) 

then the electric field E also lies in the z-direction (since both J and v x H do): 

E = (0, 0, E,), E, = constant, 

where the constancy of E, follows from curl E = 0. 
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Under these conditions the equations of continuity and momentum* reduce to 

where p, is the coefficient of shear viscosity while pl - 4p2/3 is the coefficient of 
bulk viscosity. Similarly, under the assumption that a fluid element receives 
energy only by heat conduction (coefficient k )  and by viscous and electrical 
dissipation, and assuming the gas to be perfect, we find the specifying 
equation 

au av p 
-,u~u --,M~v - - - { ( H i  - H’) u + 2Hn Hv} - 

ax ax ax 2 CT ax 

( 6 )  

where y has its usual meaning. 
To these must be added the conduction equation (4) with J given by (3) 

(7) 
dH 
~ = r[E0 + ~ ( u H  - vH,)]. 
ax 

These five equations (for u, v, p ,  p, H )  immediately integrate to give p u  = m 
(constant) and 

au 
ax 

p - = mu+p++pH2-A,  

+(us+ v2) -HE,  - i pH(uH - 2Hnv), 1 d T  
ax 

k -  = C + A u + B v + m  

1 dH 
CT ax  = Eo + ~ ( u H  - vHn), _ _  

where A, B, C are constants. Without loss in generality we may take u > 0 and 
hence m > 0, and, since we are interested only in flows which tend to uniform 
conditions (dldx = 0), we also have A > 0. When the dimensionless variables 

m m m2p m2RT 
U = - U ,  V = - V ,  h =  J ( & ) H ,  O = - = -  A 2 p  

A A A2 

* In this paragraph see Goldstein (1957) for the complete equations. 
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are introduced, the equations become 

dU 
b U -  = - U + 0 + U 2 + U h 2 ,  
m dx 

!%? = a+ V-2h,h, 
m dx 

0 
d0 - b +  U-aV+--eoh-Q(U2+ V2)+2hnVh-Uh2 a&- Y - 1  

my dh 
A dx-" 

l e  +Uh-hnV, 

where y = 1/pa is the magnetic diffusivity, and 

Solutions of the system (8) are represented by curves in ( U ,  V ,  0, h)-space on 
which x is a parameter. In order to visualize their geometry we make the fol- 
lowing simplifications. (i) In  the third of equations (8) k is set equal to zero; it is 
known that in the purely gas-dynamical ca.se the neglect of heat conduction has 
no effect on the general character of shock transition solutions (see Gilbarg 1951). 
(ii) In  the second equation (8) we put ,u2 = 0; this corresponds to the physically 
unrealistic assumption of zero shear viscosity and non-zero bulk viscosity, but 
again this is justified in the purely gas-dynamical case (in fact the relevant 
solution is the same: V = - a, whether ,uz is zero or not). Under these assump- 
tions the system (8) reduces to 

when V and 0 are eliminated; here 

a = ahn+4eo, P = - (b+&a2).  

2. The singular points 
In  the ( U ,  h)-plane the infinite isocline of the system (9) is the cubic f = 0. The 

zero isocline is formed by the rectangular hyperbola" g = 0 and the h-axis: U = 0. 
We are concerned with integral curves lying in the right half of the plane: U > 0, 
and in particular those joining the singular points given by f = 0, g = 0. These 
points are also the intersections of the ellipse 

* For a = 0 the results which follow must be understood in an appropriate limit sense. 
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which is not an isocline, and the rectangular hyperbola (see figure 1). Therefore, 
there are 0 , 2  or 4 real singular points, of which an even number lie on each branch 
of the hyperbola. On eliminating U between f = 0 and g = 0, we find that their 
ordinates are given by the quartic equation 

P(h) (2-7) ah'+ [2(7+ 1 )  hk- Zyht+ (7- 1)/3]h2 
- a [ 2 ( y + 1 ) h i - y ] h + + ( y + 1 ) a 2  = 0. ( 1 1 )  

We now investigate the nature of the singular points, since it is this which 
determines the way in which a transition flow tends to the corresponding uniform 
conditions at infinity. 

(2 - Y )  a 

F I Q ~ E  1. Singular points in phase plane. 

In  order of decreasing JhJ the points (in U > 0) with h > 0 are alternatively 
saddle and nodal, and similarly for those with h < 0. For the characteristic 
equation of (9) at a singular point (U,, ha) is* 

K2 - tJ;U + 8 h )  K + (fu 8h --Sh8U) = 09 (1 .2)  

wheref = mf/,ul U ,  8 = Ag/my and all values are to be taken at  the point, i.e. 

and 

The discriminant of this equation is 

(SlJ - 8d2 + 4fhhgU, 
* This equation determines the exponential solutions (ecs) of (9) when the right-hand 

sides are linearized in the neighbourhood of the point (cf. 8 5) .  
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which is positive sincefh and &, have the same sign; hence the roots of (12 )  are 
real. Also the constant term has the same sign as 

where F(h) is given in (1 1). Now hd[F(h)/h2]/dh is clearly positive for sufficiently 
large lhl and has opposite signs at consecutive zero of F(h)/h2 on the same side 
of the U-axis. Since a negative constant term implies a saddle point, and a 
positive one a nodal point, the result follows. 

Since there may be two nodal points in the region of interest the possibility 
arises of there being an infinity of integral curves joining them, i.e. a family of 
transitions between given states at x = ~f: co. We shall discuss two particular 
cases; in the first this does not occur, in the second it does. 

3. The case H, = 0 
This was discussed first by Marshall (1955) and then by Burgers (1957). The 

former did not completely discuss the limit of vanishing viscosity; the latter 
assumed zero viscosity from the start and hence had to introduce extraneous 
assumptions. 

We return for a moment to the original equations (8), with p 2  not necessarily 
zero, and set h, = 0. Then the second of these can be integrated explicitly, the 
only relevant solution being V = --a (all others are exponentially large at 
x = +a). But this is precisely what is used to  eliminate V and obtain equations 
(9) when ,u2 = 0. Hence, in the present case our discussion is in fact independent 
of the assumption p 2  = 0. 

The rectangular hyperbola becomes 

g r a + h U = O ,  

and the ellipse (10) degenerates into the parabola 

Y 2  
2(Y + 1) 

2 
f - y h g r - [ [ U - L ]  Y+1 - (2-y)ah+ (?-1)j9--] = 0. 

2 Y+1 
Since the system (9) is unaltered on replacing a, h by - a, - h we may take a < 0. 
Then these curves will lie as in figure 2, always having an intersection 3 at which 
U < 0, and, for suitable values of a, B, another two intersections 1 , 2  at which U 
is always positive. This can be read off from (1 l), which also shows that the fourth 
intersection lies at infinity on the lower branch of the hyperbola, 

Only the points 1 and 2 are of physical interest. Between them f is negative 
( = f - yhg) on the hyperbola and positive ( = yhg) on the parabola. Hence the 
infinite isocline: f = 0 lies above the hyperbola and below the parabola. Since 
each horizontal cuts it in at most two points (see (9)), it has just one extremum 
(a maximum) between 1 and 2 if it has positive slope at 2 and none if it 
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has negative slope. From (13a)  the condition for a maximum is therefore 
Ug - yU2( 1 - U2 - @) = U," - y 0 ,  < 0, or in the originalvariables: u$ < yp2/p2 = a:. 
Within the region R bounded by the arcs 1 2 off = 0 and g = 0 the integral curves 
have negative slope, with x increasing in the negative U-direction on each. 

We saw in the last section that 2 is a saddle point and 1 is a nodal point. The 
singular directions at either point are determined by 

Q(m) = j h r n 2 + ( j u - g h ) r n - ~ u  = 0; 

hence, since Q(0) < 0 and Q ( k GO) > 0 (see (13)) ,  one has positive slope and the 
other negative. It now follows, as in the purely gas-dynamical case (see Gilbarg 
1951), that there is a unique transition solution joining the points 1 and 2,  which 

FIGURE 2. Transition curve for H ,  = 0. 

correspond to x = - co and x = + 00, respectively, * and this curve lies in R. 
Moreover, when the infinite isocline is monotonic between 1 and 2, the limiting 
transition as pl -+ 0 follows this isocline; whereas when there is a maximum, it 
follows the isocline until attaining (at 2') the same ordinate as 2 and then the 
horizontal into 2. This second behaviour is due to the fact that no integral curve 
can attain positive slope in R. 

The straight segment 2 2' corresponds to a purely gas-dynamical shock (x con- 
stant in limit); across it the RankineHugoniot conditions hold. Forf = 0 is the 
result of eliminating V and 0 between the equations obtained by setting the 
right sides (with ha = 0) of the first three equations (8) equal to zero. Hence 

Y 477; + __ O2 = - b + aV, + e0h2 + 4 T': = - b +a& + eoh2, + +Vp 
Y - 1  

* The sign of (14) expresses that ua is greater than yp/p+,uHa/p at 1 and less at 2, i.e. 
the transition flow is initially supersonic and &ally subsonic. 
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which, combined with p2u2 = p2,u2, and expressed in the original variables, are 
precisely the Rankine-Hugoniot conditions. The point 2 also corresponds to the 
whole uniform limit state behind the shock. 

Thus, we see that a transition flow in an electrically conducting fluid of 
vanishingly small viscosity contains a gas-dynamical shock if and only if the 
final state is subsonic (in the gas-dynamical sense), and that when it does the 
whole adjustment region (to hydromagnetic values) lies upstream of the shock. 
The magnetic field is continuous across the shock, though dHfdx undergoes a 
jump cr(E,, +,uu2.H2). 

4. The case H = 0 in initial state 
One possibility is that H = 0. The transition is then a purely fluid-dynamical 

one with no interaction between flow and magnetic field. We shall see im- 
mediately, however, that this is not the only possibility under certain circum- 
stances; indeed, our assumption only implies a = 0 in (9). 

Clearly the present section covers Friedrichs' switch-on shock discontinuities 
( H  = 0 initially but not finally); it also covers his switch-off ( H  = 0 finally but 
not initially), and transverse ( H  changes sign but not magnitude) shock dis- 
continuities, since either assumption concerning the end-points leads to a = 0 
also. 

The zero isocline degenerates into the pair of straight lines 

U = 2h2,, h = 0,  
while the infinite isocline 

represents a hyperbola in the ( U ,  h2)-plane. [We use this rather than the (U, h)- 
plane in the present section.] The three points of intersection are 

1 , 2 :  u=- ( l f k ) ,  h 2 = 0 ,  
Y + l  ~. 

L\ 21 

where k = yl(1- 2(y2- 1)p/y2) (which must be real, by assumption). 
Thus, there are five ranges of the parameter h, to consider:* 

(i) 

(ii a )  

(iib) 

2h: < L ( 1 - k )  = U2, 
Y f l  

- ( l - k )  Y < 2h2, < z ( l - k ) ,  
Y + l  y2- 1 

- ( 1 - k )  Y 2  < 2hi < - ( l + k )  Y = U., 
y2- 1 Y + l  

* From the f is t  of equations ( S ) ,  0, = U, (1 - U J .  Hence, with positive temperature 
at 1, k is less than l/y. 
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(iii a) 

(iii b )  

- ( l+k)  Y < 2h2, < ----(l+k), Y 2  Y+l y2- 1 

The different situations are illustrated in figures 3-6. In  case (i) (figure 3), the 
point 3 is discarded and 1 , 2  lie on the same branch of the hyperbola with 1 a nodal 
and 2 a saddle point. For (ii), 3 is a saddle point, while the points 1 and 2 are 
nodal, lying on the same branch when (iia) holds (figure 4) and on different 
branches when ( i ib )  holds (figure 5). With (iii) (figure 6), the point 3 is again 
discarded, the point 1 is a saddle, and point 2 a node, and the latter lie on different 
or the same branches of the hyperbola according as ($a) or (iiib) holds. The 
integral curves are easily sketched once the singular directions at 1 , 2  and 3 have 
been determined and the signs of d Uldx and dhldx in the various regions found. 

2(9 - 
FIGURE 3. Integral curves for 

a = 0; case (i). 

U - 
FIGURE 4. Integral curves for 

a = 0; case (iia). 

When (i) or either of (iii) holds there is a unique transition: it starts at  1 and 
ends at 2 ,  and has H = 0 throughout, so that there is no interaction between the 
fluid motion and the magnetic field. The end-points 1 and 3 satisfy the ordinary 
Rankine-Hugoniot shock conditions. The same transition can occur in case (ii), 
but now there is not only a second end-point* 3 (to which the transition is unique), 
but also a whole family of possible transitions from 1 to 2. Within each, H 2  
increases from zero to a maximum and then decreases to zero again. 

Before discussing this lack of uniqueness in greater detail we make one further 
observation. If the initial state and magnetic field are chosen so as to give the 
point 3 in figure 4, there will be a unique transition ending at  the point? 2. NOW 
the hyperbola has its maximum1 to the left of 3, so that as ,ul -+ 0 this transition 

* The pair I, 3 represents the switch-on shock, while the two images of 3 in the ( U ,  h)-  
plane represent the transverse shock. There is clearly no integral curve joining the latter. 

t The pair 3, 2 in figures 4, 6 represents the switch-off shock. 
$ For smaller h, the maximum lies on the right side; the change takes place aa u8 

increases through a3 = J(yp3/ps). 
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will tend to follow the horizontal 3 3' and then the infinite isocline to 2 .  A proof 
quite similar to that at the end of § 3 shows that 3 and 3' satisfy the ordinary gas- 
dynamical shock conditions. However, in contrast to § 3 the whole adjustment 
region now lies downstream of the shock. 

FIGURE 5. Integral curves for a = 0; case (iib). 

FIGURE 6. Integral curves for a = 0; case (iiia). In  case (iiib) the hyperbola has the same 
form EM in figures 3 and 4, the points 1 and 2 now lying on the upper branch. 

5. Axially symmetric flow 
A simple way to close the current lines is to consider a flow in which the velocity 

v and magnetic field H are given by (1) in a cylindrical co-ordinate system 
(x, T ,  O), where now all components are functions of x and r but not of 8. Then ( 2 )  
is replaced by 

aH, 1 a 
ax r ar 

__ + - - ( rH)  = 0, 

and the currents form closed loops (circles) in the fluid with 

aH aH, 
ax ar J = ( O , O ,  J), J = ---. 
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From (4) we then see that E has only a @-component: 

E = (0, 0, ?) , E, = constant, (16) 

where curl E = 0 has been used to obtain the form of this component. 
We now consider the ways in which a uniform stream: u = uo, v = 0, p = p 07 

p = po with H = 0 and H, = Hn0, at x = --GO can be disturbed. In the one- 
dimensional case such disturbances are represented by the integral curves leaving 
a point such as 1 in figures 3-6. Here we discuss only the immediate behaviour 
and hence replace all coefficients in the non-linear equations of continuity, 
momentum, energy balance, and electric conduction by their zero values. Using 
ZG, v, p ,  p ,  H and H, for their own disturbances now, we find (5) ,  (6) and (7) 
replaced by 

au aP Po a Po-+uo-+--(rv) = 0, 
ax ax r ar 

Po 
> a ; = y - ,  

ax ax Po 
ap --a;-= aP 0 

[,, aHn] = uoH-Hn0v; z--z 
in obtaining this last equation from (4) we must set Eo = 0 in (16) to ensure that 

The six functions u, w, p ,  p ,  H,, H must therefore satisfy equations (15) and (17). 
For reference we first determine the corresponding solution in the one-dimen- 
sional case, which is obtained by replacing all a/ar terms by zero. The resulting 
homogeneous system is solved by setting all variables proportional to e X X ,  where 
either h = 0 (which we exclude) or H, = 0 and* 

a H p x  + 0 as x + --GO. 

The complete (relevant) solution is 

where A and B are arbitrary constants. Each ratio A :  B determines a different 
disturbance of the initially uniform stream, the remaining scale factor corre- 
sponding to choice of the origin of x. 

they are both negative, confirming that the latter is approached as x + + co. 
* At the point 1 in figures 4 and 5, Al and h, are both positive of course. At the point 3 
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We now set all variables proportional to eAx in (16) and (17)) denoting the 
factor in each case (a function of r )  by the variable itself. Then from (16)) (17a), 
(17d) and (17e) we find 

2,= 

i a  
r ar 

where P = - - r and from (17 b) ,  ( 1 7 ~ )  u, H must satisfy 

with 

( C , + D , P ~ )  PH = 

(21) 
A 
r 

so that H = - + gl(mr), m = J$, 
where S1 is the general solution of Bessel's equation of order one, and A is an 
arbitrary constant. Pending further discussion, we take %, = 0; then from (20b) 

u = - - A l o g r + B .  B2 
4 

Similarly, for h = A, :B, = 0 and 
D 2 0  

H = C r + - ,  u = --'C, 
r A1 

where C and D are arbitrary constants and zero has been taken as the solution of 
a Bessel equation. 

The general disturbance is therefore given by (1 9) and 

Thus for r -+ 00, (i) with s = 2 + (log r)/h, fixed, we find 

u = 0, H = Ce"s8; 
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(ii) with C = 0 and s = x + (log log r)/Al fixed 

(iii) withC = A = Oands = xfixed 

u = Behis, H = 0; 

and, finally, (iv) with C = A = B = 0 and s = x- (logr)/h, fixed 

u = 0, H = .DeAzs. 

We conclude that the only one-dimensional disturbances which are the limits as 
T + 00 of axially symmetric ones are those corresponding to A = 0 or B = 0 in ( 1  8). 
This singles out what may be called the two principal solutions of (9) through the 
point 1 in figures 4 and 5, and it is clear that one of the principal solutions is the 
purely fluid-dynamical transition H = 0. The other may be ignored, at least for 
small enough q/pl.* 

The reason for excluding the Bessel function in ( 2 1 )  is now clear. For larger, the 
corresponding solution would either oscillate, and hence not have a one-dimen- 
sional form, or else behave exponentially (small or large): eTF/rh, 7 = irn. For 
the latter we would have to take s = x + 7r - (log r)/2A1, which corresponds to a 
shock front at  an oblique angle to the incident stream. 

Final remarks 
The lack of uniqueness found in $ 4  cannot be attributed to the unrealistic 

assumption p2 = 0; without this assumption there is still an infinite number of 
integral curves in ( U ,  V ,  h)-space joining the points 1 and 2 in figures 4 and 5, 
which are now a nodal and nodal-saddle point, respectively. Also the discussion 
in $5 need not be restricted in this way and the (three) principal solutions 
through 1 are again singled out.-/- 

Moreover, the same results are obtained in the limit p l ,  p2 + 0 as for our special 
case p2 = 0, p1 + 0. For a limiting transition curve in ( U ,  V ,  h)-space clearly 
follows the curve obtained by setting the right sides of the first three equations (8) 
equal to zero, except possibly for a segment lying in a plane h = constant whose 
ends lie on this curve (cf. end of 6 3). At these ends the value of V = - a + 2h, h is 
the same, so that V is constant along the segment; otherwise dV/dx  would have 
to change sign on transition curves at points outside the plane 

V - 2 h 7 , h + a  = 0. (22) 

Thus in the limit p17 p2 + 0 the transition curve lies in the plane (22) and follows 
the same path as for p1 + 0, p2 = 0. 

* Its slope at 1 is dha/d U = [ Ul( U, - 2h:) - &(y + 1) E(  Ul - U,)]/s[y U,  - 2(y - 1) h3 ,  
where E = mz~/A,ul. Thus for E < 2U1( Ul- 2h:)/(y + 1) ( Ul- Us) = e0 the curve leaves 
1 with positive slope and joins 1 to 2 below the U-axis (figures 4 and 5 were drawn for 
E large) ; such a join must be rejected (h  is imaginary). As E increases past eo we may expect 
the curve to continue to join 1 and 2, but now above the U-axis. It would then provide an 
alternative transition to H 0. 

t And similarly at 2 ,  where one of the solutiom may be discarded since the point is 
approached as z -+ - 03. 
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